節能績效量測驗證方法與技術

陳輝俊

中華民國能源技術服務商業同業公會理事長

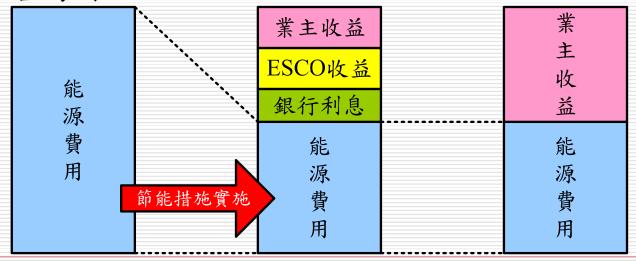
時間:101年07月12日

地點:台中世界貿易中心 203會議室

大綱

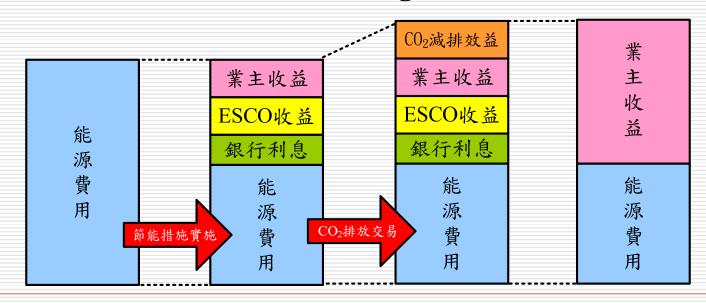
- ESCO定義
- □ ESCO專案與傳統專案之差異
- □ 名詞定義
- □ ESCO節能績效保證專案作業流程
- □ ESCO節能績效保證專案財務融資作業流程
- □ ESPC專案案例分析

能源技術服務業(ESCO)之定義


□經濟部商業司定義--能源技術服務業

■ 從事新淨潔能源、節約能源、提升能源使 用效率或抑制移轉尖峰用電負載之設備、 系統及工程之規劃、可行性研究、設計、 安裝、施工、維護、檢測、代操作、相關 軟硬體構建及其相關技術服務之行業,其 行業代碼為IG03010。

節能績效保證型契約


□ 能源技術服務業 (Energy Service Company, 簡稱 ESCO)係以節能績效保證型契約 (Energy Saving Performance Contract, 簡稱ESPC)的方式進行節 能改善專案。

具有溫室氣體減排交易之績效保證型契約節能改善專案

□ 為了因應京都議定書所提倡的溫室氣體減量排放之議 題,藉由節能績效保證型契約進行節能改善專案時, 除了可以保證節省收益之外,還可以一併進行污染物 減排交易(Emission Trading)。

節能專案實施前

節能專案實施期間

節能專案終止後

- 5

傳統之節能改善專案

- □ 傳統節能改善專案之缺點
 - 業主有資金問題
 - 無節能績效保證
 - 無公信力之量測與驗證
 - 業主需承擔風險

ESCO節能與傳統節能專案之差異TESA/

	ESCO模式(IPMVP)	傳統模式
技術區別	系統整合(含單獨系統)	單獨系統
量測與驗證方式	4種M&V選項 M&V與國際接軌	1種計算方式、無調整量 無驗證機制
基準線訂定	有強制訂定	無強制訂定
節能量 計算方式	= 基準線耗能量 - 改善後耗能量 ± 調整量	= 改善前耗能量 - 改善後耗能量
商業模式	節能效益分享型 節能量保證型 能源服務託管型	一次驗收解決
資金取得 方式	協助能源用戶取得融資 能源用戶自有資金	能源用戶自有資金
節能績效 評估結果	受國際認可 具有節能量與節能持續性之保證	無保證 部分無法受國際認可 (節能工程做白工)

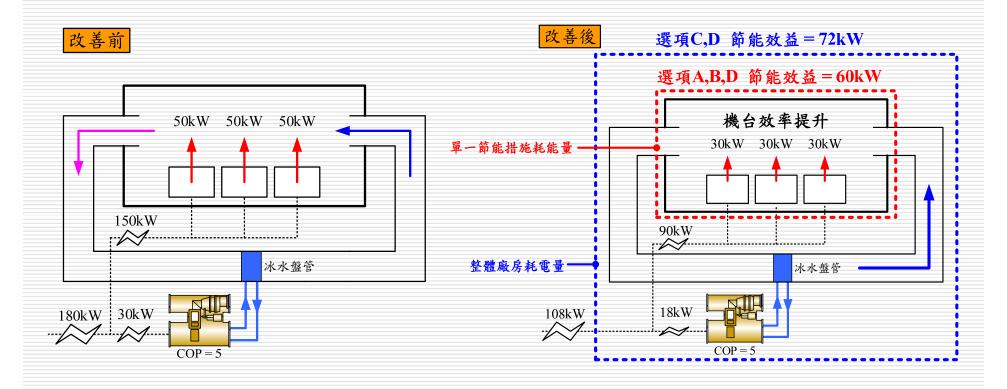
- □ 基準線調整量(baseline adjustment):改善後所出現無 法預測的非常規性調整(non-routine adjustment)。
- □ 基準年條件(baseyear conditions):引起基準年耗能量 與契約容量變化的條件。
- □ 基準年耗能數據(baseyear energy data):基準年期間的 耗能量或契約容量。
- □ 基準年(baseyear):實施節能措施前所定義的一段時間 長度。
- □ 基準線(baseline):指約定範圍中節能改善工程施工前量 測之性能(效率或耗能量)。
- □ 基線(baseline/benchmark):根據既有設備所產生之能 耗做為能源管理的指標。

名詞定義-M&V的四個選項

M&V方案	如何計算節能效益	成本費用
選項A:獨立改善,部分量測	使用短期或連續量 測、約定值、電腦	決定於量測點的 多寡、約定內容
透過現場量測獨立改善設備的耗能來計算節能量,量測時間可短期或連續	模擬與/或歷史經驗	的複雜程度、量
量測。部分量測代表某些參數可以為 約定值,但做約定時必須要有誤差分	數據作工程上的計算。	測頻率,典型的 費 用 大 約 佔
析,證明約定值總誤差造成節能量計 算結果的影響不大。		1~5% 的改善計畫成本。
選項B:獨立改善,全部量測	使用短期或連續量	決定於量測點及
透過現場量測獨立改善設備的耗能來 計算節能量,量測時間可短期或連續	測或電腦模擬作工程上的計算。	系統型態,與分 析及測量的條
量測。全部參數皆為量測值,而非約定值。		款。典型的費用 約佔3~10%的改
		善計畫成本。

名詞定義-M&V的四個選項

M&V方案	如何計算節能效益	成本費用
選項C:整廠改善、全部量測 透過量測整廠、整建築的耗能來計算 節能量,量測時間可短期或連續量 測。利用現有電力公司或燃料公司公 表量測。	使用迴歸分析技術 針對公表或分表之數據進行分析比較。	決定於分析參數 的數量及複雜 度。典型的費用 約佔1~10%的改 善計畫成本。
選項D:模擬 透過模擬來求得節能量,獨立改善或 整廠改善皆可適用。此選項需要大量 模擬方面的技術與理論基礎。	將逐時或逐月耗能 數據或終端設備的 量測值代入耗能模 型進行校正後,再 透過模擬獲得。	決定於分析系統 的數量及複雜 度。典型的費用 約佔3~10%的改善計畫成本。


□量測邊界(boundary of measurement):量測邊 界針對獨立改善項目時,僅包含節能改善措施 的系統或設備。在界定邊界時必須同時考慮到 直接作用和相互作用對於節能量所帶來的影響。

- □ IPMVP有四種M&V選項,不同的選項具有不同的量測邊界。
 - ■選項A與選項B之量測邊界僅針對單一節能措施、獨 立進行節能改善的子系統或設備。
 - ■選項C之量測邊界是涵括全系統或整體廠房。
 - ■選項D之量測邊界則視模擬範圍而定,其量測邊界範圍可以是單一節能措施,亦可以是整體廠房。

名詞定義 - 量測邊界

- □ 校正(calibrate):將模擬的耗能量與契約容量和 實際的耗能量與契約容量進行比對並調整的過 程。
- □功能驗證(commissioning):完工、認證和確定 設備性能是否能滿足廠房操作需求,是否達到 設計和業主之要求的過程,包括操作人員的準 備。

- □ 需量(demand):電力或燃料的最大使用量。
- □ 節能措施/節能效益(energy conservation/efficiency measure, ECM/EEM):指一系列提升廠房、設備效率的活動,包含一項或多項設備的變化、操作與維修程序的修正、軟體變更、使用者/管理者/操作人員培訓或採用新制的管理方法等。
- □ 度-日(degree-day):用來衡量因為室外溫度引起暖氣和冷氣需求的單位。當室外溫度低於參考溫度(18°C)1度時,定義為1個加熱度-日;若此室外溫度持續10天,則為10加熱度-日;若溫差12°C持續10天則計為120加熱度-日。參考溫度係指不需要暖氣和冷氣時的溫度。

- □ 能源管理系統(energy management system, EMS):可透過程式編輯如監控軟體,達到控制和監測廠房、設備操作狀況的電腦。
- □ 節能績效保證合約 (energy performance contract, EPC):雙方或多方係根據完成的指定成果來付款而簽訂的合約,其內容通常為保證可減少耗能與運轉成本。 EPC在美國又稱為energy savings performance contract, ESPC。
- □ 節能服務公司(energy service company, ESCO):在 ESPC之下提供能源效率服務、融資服務,並保證可能 達到指定節能量的公司。

- □獨立變數(independent variable):量測邊界內, 影響耗能量和需量的週期性變化參數。
- □ 相互作用(interactive effect): 指ECM的耗能量或 契約容量在超出量測邊界以外的影響。
- □ 量 測 與 驗 證 (measurement and verification, M&V):採用IPMVP其中一個選項而求得節能量的過程。
- □ 改善後運轉期間(post-retrofit period): ECM經功能驗證之後的任何一段運轉時間。

- □ 迴歸模型(regression model):從量測數據中反推得 到獨立變數之數學模型,用於描述獨立變數和因變 數之間的關係。
- □ 模擬模型(simulation model):根據使用者所定義之 參數以及工程計算來計算耗能量的演算法。
- □ 靜態因子(static factor):指在量測邊界之內,影響 耗能量和需量的恆定參數,此參數不隨時間變動。
- □ 驗證(verification):檢視他人達到預期節能目標所 彙整出來之節能報告是否合理的過程。

名詞定義 - 基準線的調整方式

- □ 系統耗能基準線之調整方式
 - 將改善前之基準線調整至改善後之操作條件(需 建立系統改善前之基準線)
 - 將改善後之基準線調整至改善前之操作條件(需 建立系統改善後之基準線)
 - 將改善前與改善後之基準線調整至標準操作條件 或相同操作條件(需同時建立改善前與改善後基 準線)

參與者 ES ESCO/客户 ESCO/客户 節 **ESCO** 節能改善計畫書 能績效 客户 決定是否繼續專案 選定節能改善量測與驗證 ESCO/客户 保 模式與建立基準線 證專案作業流 ESCO/客户(監督) 節能改善工程 第三方公正單位 ESCO/客户 定期檢視 ESCO/客户 程 ESCO/客户

流程

盤查

診斷

量測與驗證

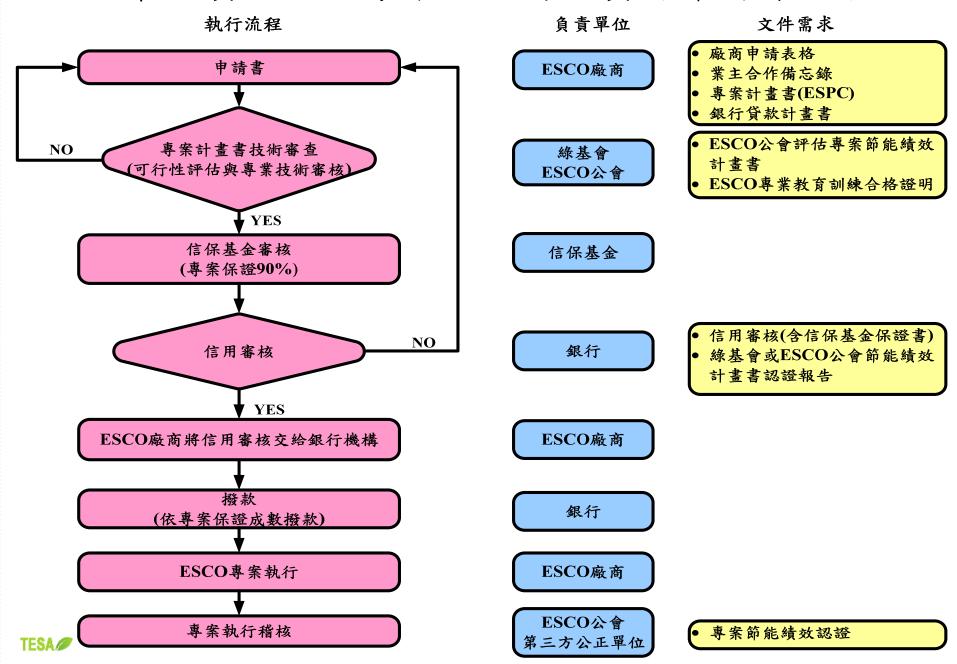
是否節能?

保證期間內

維護保養

展開新合約

YES

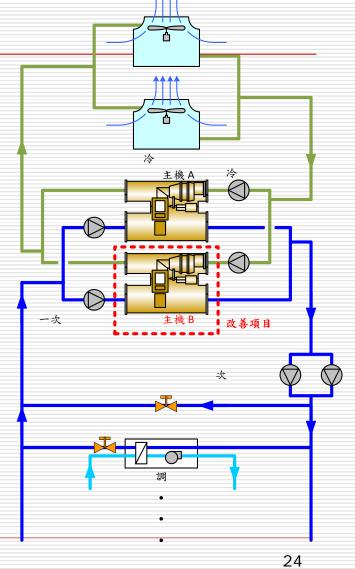

No

No

Yes

ESCO節能績效保證專案之財務融資標準作業流程

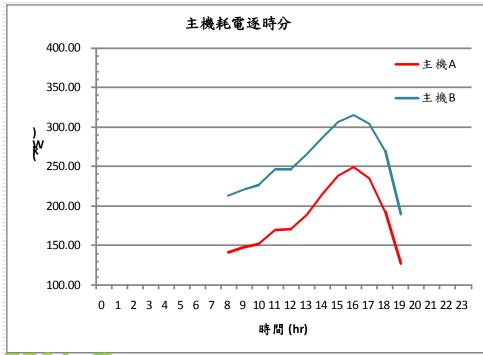
ESPC專案案例分析

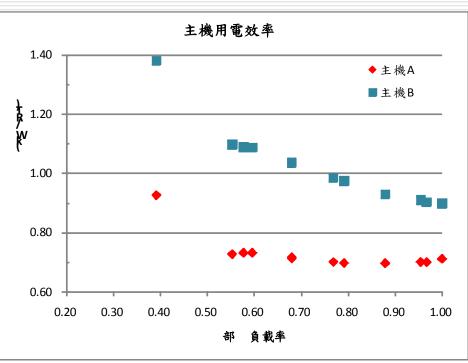

案例: 主機 (採用IPMVP選項D)

□台 某商業大 ,有2台350RT 主機, 商業大 日使用時間為上 8:00至 上 20:00 , 計12 時,年運轉天數為255天。 主機中, 有1台運轉年數超過10年,經 ,其性能COP不 。業主為 低運轉 能源費用,針對COP不 之 主機,採 新節能措施。

案例: 系統描述

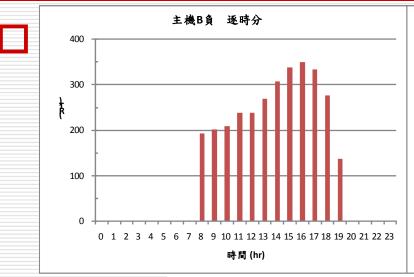
設備	設備規	數量
主機	350 RT(1,230 kW)	2
冷	450 RT(1,587 kW)	2
一次	流量:0.0588 m³/s 程:147 kPa	2
次	流量:0.0588 m³/s 程:294 kPa	2
冷	流量:0.0735 m³/s 程:196 kPa	2

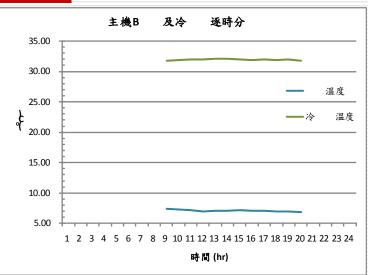

入出

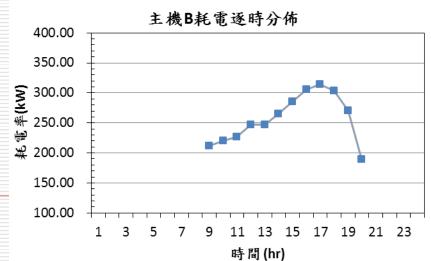

温為12 ℃進/7 ℃出;冷 則為32 ℃進/37 ℃出

TESA/

案例:改善前 主機性能


- □ 主機耗電比較
 - 經比較主機逐時耗電率後可 現,主機 B 的 入電功率皆 於 主機 A ;再比較單位 冷耗電率,主機 B 亦較主機 A 0.2~0.4 kW/RT





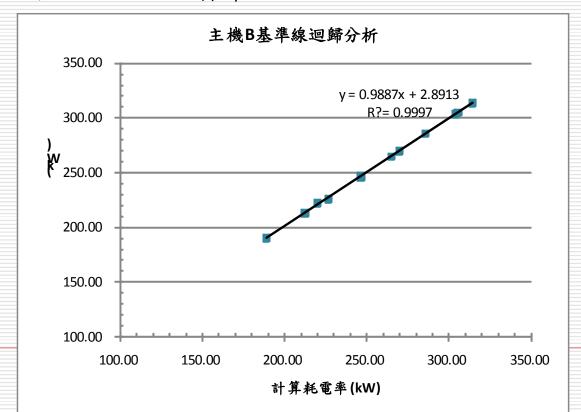
案例:改善前 系統耗能

案例:改善前 系統基準線建立

- □ 基準線建立
 - 主機之耗電率與 出 溫、冷 入 溫以 及實際負 有關
 - 利用短期或長期量測之 溫、冷 溫與主機負等數據,以迴歸分析方式建立主機 B 的耗電率計算模型 (基準線) 主機 B
 - 基準線型式為

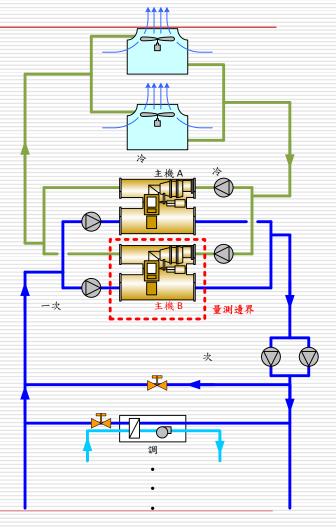
$$\dot{W} = a_0 + a_1 \cdot (T_{cwr} - T_{chs}) + a_2 \cdot (T_{cwr} - T_{chs})^2$$

$$+ a_3 \cdot \dot{Q}_{ch} + a_4 \cdot \dot{Q}_{ch}^2 + a_5 \cdot (T_{cwr} - T_{chs}) \cdot \dot{Q}_{ch}$$


$$T_{chs}$$
為 出 溫
$$T_{cwr}$$
為冷 入 溫

案例:改善前 系統基準線建立

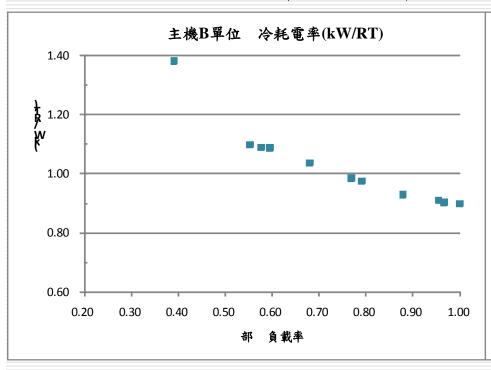
- ■基準線迴歸分析結果
 - 主機B:R²=0.9997
 - ▶ 合R² 0.75之標準

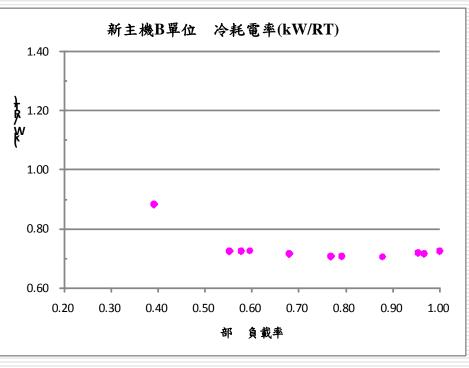


案例:改善方案

□ 工程內容

- 針對運轉效率較差之主機 B , 為效率較 的新型主機
- 工程費用3,000,000
- 新主機的耗電率, 據設備商提供之 測 數據,可建立其耗電率計算模型 $\dot{W} = a_0 + a_1 \cdot (T_{cwr} - T_{chs}) + a_2 \cdot (T_{cwr} - T_{chs})^2$ $+ a_3 \cdot \dot{Q}_{ch} + a_4 \cdot \dot{Q}_{ch}^2 + a_5 \cdot (T_{cwr} - T_{chs}) \cdot \dot{Q}_{ch}$


	新主機 B
a_0	0.035828
a_1	-1.905113
a_2	0.175990
a_3	-0.081936
a_4	0.000105
a_5	0.003201



案例:改善方案

- □ 改善前後主機 B 效率比較
 - 新主機的運轉效率,在 種負載率下, 較 主機 ; 主機的單位 冷率皆 於新主機。

案例: 節能效益之計算參數 明

□ 計算參數

■ 計算用之 調負 與外氣條件如次4 所

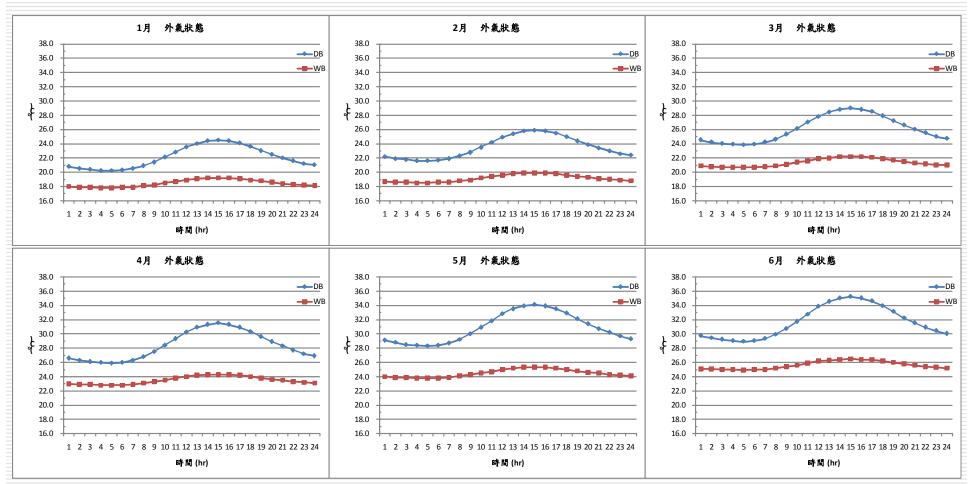
■ 主機 温度:7°C

■ 主機冷 温度:32°C

■ 耗電量計算日數:

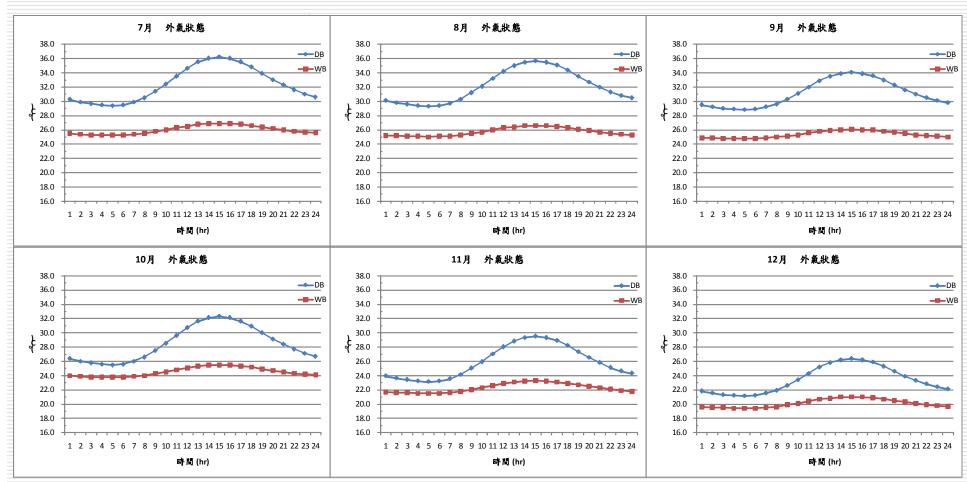
1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月	合計
22	15	22	21	22	21	22	23	21	22	22	22	255

■ 流動電費單 :1.8 /kW-h

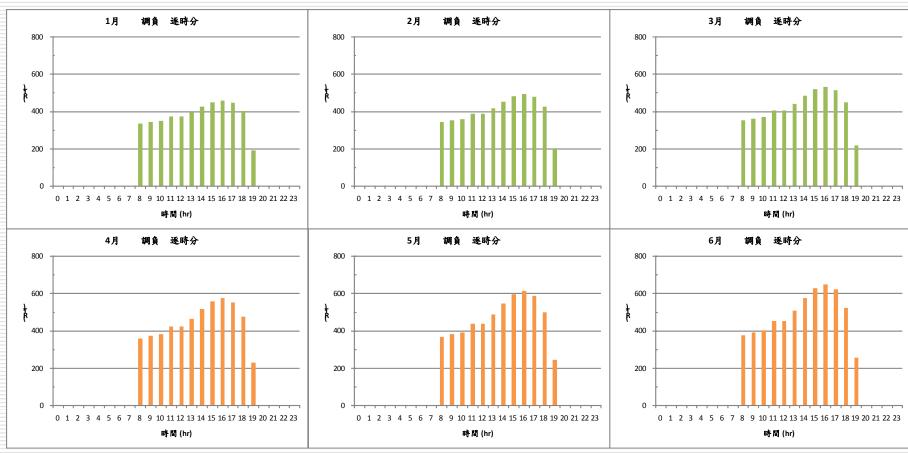

■ 物 年 率:2%

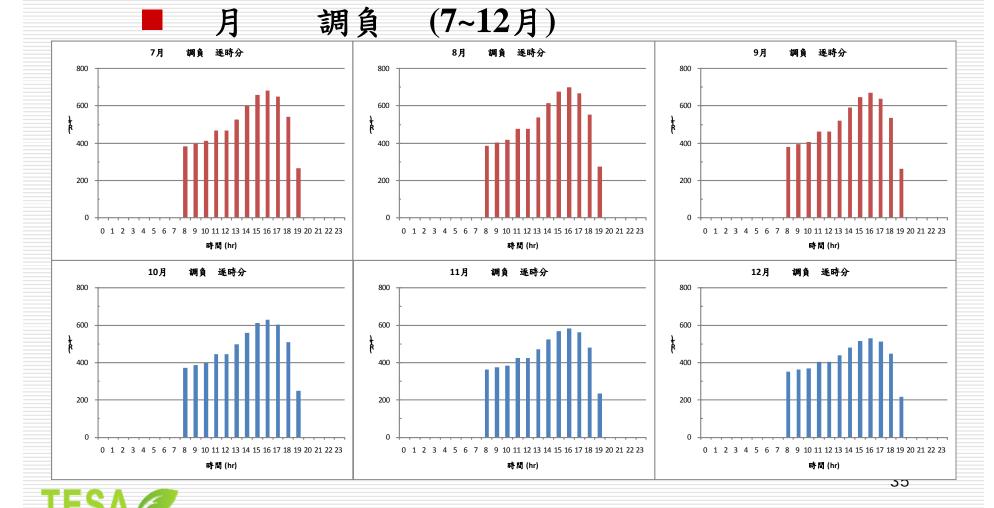
■ 年利率:1%

案例: 外氣條件(由氣


取得)

案例: 外氣條件(由氣


取得)


案例: 調負載的計算

■ 月 調負 (1~6月)

案例: 調負載的計算

案例: 節能效益的計算

- □ 改善前、後 主機全年用電分析
 - 此案例無基準年之實測數據, 採選項D方式計算節能效益
 - 改善前之 主機與改善後之新主機, 建立其耗能計算模型, 者皆 入前述相同之計算參數,以獲得改善前後之用電量比較

								用電	定量 (MV	W-h)					
		設備別	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月	計
1	改善前	主機B ()	57.9	40.5	61.1	60.1	64.7	63.2	67.7	71.7	64.1	65.4	63.3	60.9	740.4
	改善後	主機B (新)	38.3	27.1	41.4	41.3	45.2	44.8	48.6	51.9	45.8	45.9	43.7	41.2	515.1
		節電率	33.8%	33.1%	32.3%	31.2%	30.2%	29.1%	28.2%	27.6%	28.6%	29.7%	31.0%	32.3%	30.4%

案例:節能效益

大安		指標	改善	美前	改	善後	節能	節能效益	
方案	MW-h / 年		/年	MW-h/年	/年	MW-h/年	/年	%	
		耗能	740.4	1,332,727	515.1	927,248	225.3	405,479	30.4
		CO ₂ 排放量	471 Ton / 年		220 T	on 1 Æ	減少CO ₂ 排放量		
	更				328 Ton / 年		143 Ton / 年		
	主機		ο 414 π	1 1 Fr	0.200.7	D 1 <i>F</i> r	減少SO _x 排放量		
	B	SO _x 排放量	0.414 T	On / 平	0.288 Ton / 年		0.126 Ton / 年		
			0.395 Ton / 年				減少NO _x 排放量		
		NO _x 排放量			0.2/5 1	「on / 年	0.120 Ton / 年		

案例:節能效益

- □ 收年
 - 生週期成本 計算 收年 , 8年 可 收

年度	主機運轉預期 出電費	新主機運轉預期 出電費	節省 出電費	業主獲利
0				- 3,000,000
1	1,332,727	927,248	405,479	- 2,624,521
2	1,359,381	945,793	413,588	- 2,237,178
3	1,386,569	964,709	421,860	- 1,837,690
4	1,414,300	984,003	430,297	- 1,425,770
5	1,442,586	1,003,683	438,903	- 1,001,125
6	1,471,438	1,023,757	447,681	- 563,455
7	1,500,867	1,044,232	456,635	- 112,455
8	1,530,884	1,065,117	465,767	352,188
9	1,561,502	1,086,419	475,083	830,793
10	1,592,732	1,108,147	484,585	1,323,686